

SIMULATIONS OF NOISE-PARAMETER UNCERTAINTIES

J. Randa
RF Technology Division
NIST-Boulder

IMS-2002, Seattle, June 6, 2002

OUTLINE

- **♦** Introduction
- ♦ Process to be simulated
- **♦**Simulation process
- **♦**Results
 - Dependence on individual uncertainties, correlated & uncorrelated
 - Representative cases
 - Possible improvements
- **♦**Summary & future directions

INTRODUCTION

- ◆Problem addressed is propagation of errors in measuring noise parameters of an amplifier or transistor:
 - We know uncertainties in underlying measured quantities (G₁, T_{in}, S, T_{out})
 - Want to know uncertainties in the noise parameters (and gain) determined from the measurements.

- **♦**Complicating factors:
 - Overdetermined system of equations
 - Complicated dependence on the underlying variables (especially G's) and on the number of the input G's used
- ◆Problem does not admit a simple, analytical solution.
- ♦ So use Monte Carlo simulation.

Process To Be Simulated

♦ Multiple input terminations $T_{G,i}$, $G_{G,i}$; measure output $T_{out,i}$ for each

→ T_{G,i}, G_{G,i}, and S-parameters are known from other measurements, except $|S_{21}|^2$, which is determined in the noise measurements.

→ Computations were done in terms of

$$k_{B}X_{1} \equiv \left\langle \left| \hat{b}_{1} \right|^{2} \right\rangle, \quad k_{B}X_{2} \equiv \left\langle \left| \hat{b}_{2} / S_{21} \right|^{2} \right\rangle = k_{B}T_{e0},$$

$$k_{B}X_{12} \equiv \left\langle \hat{b}_{1} \left(\hat{b}_{2} / S_{21} \right)^{*} \right\rangle.$$

$$T_{out} = \frac{|S_{21}|^{2}}{\left(1 - \left|\Gamma_{GS}\right|^{2}\right)} \left\{ \frac{\left(1 - \left|\Gamma_{G}\right|^{2}\right)}{\left|1 - \Gamma_{G}S_{11}\right|^{2}} T_{G} + \left|\frac{\Gamma_{G}}{1 - \Gamma_{G}S_{11}}\right|^{2} X_{1} + X_{2} + 2 \operatorname{Re}\left[\frac{\Gamma_{G}X_{12}}{1 - \Gamma_{G}S_{11}}\right] \right\}$$

but results will be given in terms of a version of the IEEE parameters,

$$T_e = T_{\min} + t \frac{\left| \Gamma_{opt} - \Gamma_G \right|^2}{\left| 1 + \Gamma_{opt} \right|^2 \left(1 - \left| \Gamma_G \right|^2 \right)}$$

Simulation Process

- ◆ Start by knowing true values of underlying quantities (T_{G,i}, G_{G,ii}, S) and their measurement uncertainties and distributions; also start with known noise parameters. For true values, use measured or hypothetical values.
- ♦ Generate a set of simulated measurement data for $T_{G,i}$, $G_{G,i}$, S, and $T_{out,i}$, e.g.,

$$T_{meas} = T_{true} + e_T$$
,
where $\langle e_T \rangle = 0$ and $\langle e_T^2 \rangle = u_T^2$

- Analyze the simulated data as if it were real data, compute the "measured" noise parameters and gain $(|S_{21}|^2)$.
- **♦**Repeat
- **♦** Compute uncertainties in noise parameters and gain,

$$u(y) \approx RMSE(y) = \sqrt{Var(y) + (\overline{y} - y_{true})^2}$$
.

♦

NIST

- 1000 simulations
- Allow correlations among errors in all the Gs, all the T_{amb} 's, all the measured T_{out} 's.
- Also considered two possible enhancements:
 - Cold input noise source instead of, or in addition to, hot source
 - Measurement of the reverse configuration

+

10 — Uncorrelated — Correlated — Correlated — Correlated — Uncorrelated — Uncorrelated — Correlated — Uncorrelated — Correlated — Correlated — Uncorrelated — Correlated — Cor

♦

*****8

0.025 0.025 0.015 0.015 0.010 0.005 0.000 0.001 0.002 0.003 0.004 0.05

·

♦Possible Improvements

Table 3. Noise-Parameter Uncertainties for Alternative Strategies

Case	ug (dB)	uTmin (K)	uFmin (dB)	ut (K)	UReGopt	UImGopt
VG-h	0.032	4.23	0.05	9.92	0.016	0.020
VG-c	0.051	2.96	0.03	8.85	0.016	0.020
VG-hc	0.026	1.95	0.02	9.71	0.016	0.021
VG-hr	0.040	6.81	0.08	10.94	0.017	0.020
VG-cr	0.066	7.25	0.08	11.71	0.017	0.020
VG-hcr	0.038	6.31	0.07	10.94	0.017	0.020

SUMMARY & FUTURE

- **♦** Summary
 - Computed dependence on individual underlying uncertainties:
 - Uncertainty in gain is due almost entirely to u_{Thot} and u_{Tout} .
 - Uncertainty in T_{\min} is due primarily to u_{Thot} and u_{Tout} , but u_{G} also can be significant.
 - $u_{\text{Thot}} u_{\text{Tout}}$, and u_{G} all contribute to uncertainty in t.
 - u_G is most important contribution to uncertainty in G_{opt} ; u_{Tout} also contributes.

NIST

- Connector variability and T_{amb} uncertainty not too important (unless extreme).
- Correlations increase some uncertainties, decrease others.
- Uncertainties for a few representative cases computed.
- Effect of supplementary measurements:
 - Use of a cold source instead of a hot source improves determination of T_{min} , degrades gain; use of both hot & cold improves both T_{min} and gain significantly.
 - Measurement of reverse configuration actually hurts determination of IEEE parameters.

- ♦ Extensions and future plans
 - Other values, develop empirical rules?
 - Compare different strategies
 - Use it to evaluate uncertainties in NIST measurements
 - Extensions
 - version for output power measurement
 - magnitude & phase uncertainties for G's
 - User-friendly version; distribute?

→

♦12